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The properties of Pb208 have been determined, using the Brueckner-Gammel-Weitzner theory of finite 
nuclei. Self-consistent solutions of the Hartree-Fock equations as modified by Brueckner and Goldman 
have been obtained. The properties computed include binding energy, mean proton and neutron radii, 
separation energies, spin-orbit splittings, nonlocal and state-dependent single-particle potentials, surface 
depth of density and potentials, and the potential-density relation. Semiquantitative agreement with 
experiment is obtained, the maximum difference between theory and experiment being of the order of 
15%. Revised computations for Ca40 are reported to permit comparison between our results (with an 
improved treatment of the rearrangement energy) and those previously reported by Brueckner, Lockett, 
and Rotenberg for O16, Ca«, and Zr80. 

I. INTRODUCTION 

IN a series of previous papers by Brueckner and co­
workers,1 methods have been developed for the 

study of many-fermion systems and have been applied 
in detail to the determination of the properties of nu­
clear matter. Approximate extensions of these methods 
to the study of finite nuclei were proposed by Brueckner, 
Gammel, and Weitzner,2 and the properties of O16, Ca40, 
and Zr90 were calculated by Brueckner, Lockett, and 
Rotenberg.3 The IBM 704 at Los Alamos, on which 
these computations were done, did not have the capacity 
to do the Pb208 calculation, and the problem was trans­
ferred to the CDC-1604 at the University of California, 
San Diego. A better approximation of the rearrange­
ment energy was used. This paper reports the results of 
the numerical study of the properties of Pb208 and 
revised computations of Ca40 (to permit comparison 
with the previous calculations by BLR). 

II. COMPUTATIONAL PROCEDURE 

BGW and BLR discuss the procedure for extend­
ing the nuclear matter calculations of Brueckner and 
Gammel1 to finite nuclei and examine the approxima­
tions involved. Therefore, we confine ourselves to 
stating briefly the pertinent equations, several of which 
have not previously been stated explicitly. 

The problem is essentially that of solving the eigen­
value equation: 

Ei<Pi(t) = —<pt(r)+ / dxf Ft-(r,r')^-(r') 
2m +vE(r)n(t), (2.1) 

* This work was done in part under the auspices of the U. S. 
Atomic Energy Commission. 

t Lieutenant, U. S. Navy, on duty under instruction at the 
University of California. 

i See K. A. Brueckner and J. L. Gammel, Phys. Rev. 109, 1023 
(1958), for a list of references. 

2 K. A. Brueckner, J. L. Gammel, and H. Weitzner, Phys. Rev. 
110, 431 (1958), hereafter referred to as BGW. 

3 K. A. Brueckner, A. M. Lockett, and M. Rotenberg, Phvs. 
Rev. 121, 255 (1961), hereafter referred to as BLR. 

where F»(r,r') is a nonlocal potential derived from the 
K matrices of the Brueckner theory and VR(T) is the 
rearrangement potential discussed and calculated by 
Brueckner and Goldman.4 

The computational procedure consists of calculating 
a set of radial wave functions Rnij(r) from a Saxon well 
with approximately correct radius and depth. These 
wave functions are used to start the iteration procedure 
which consists of two separate parts, HI and HIL HI 
takes the wave functions and computes nonlocal poten­
tials 7iy(r,r'). From these potentials and the wave 
functions, Rnij(r), HII generates local equivalent po­
tentials Fnij(r) and Gnu(r), and solves the Schrodinger 
equation for a new set of wave functions (using the 
iterative methods developed in BGW). The new wave 
functions are then used as input for the next iteration. 

The nonlocal potential computed by HI is given by 
Eq. (94) of BGW: 

Vising) = VS* {rhn')+Wi{LS) (f i,f i'), 

./ = / - * , />0, 

where, by Eq. (4.17) of BLR 

1 f1 

2 J _i 

— 7 P l ( r r r / ) ( r 1 | F ^ | r 1 0 , (2.3) 
| r i - n ' | T\f\ 

with n=?vfi and x= r 1
/ - r x (see Fig. 1). 7(L5)(ri,ri') 

is given by a similar equation. V0(r,rf) is graphed in 
Fig. 2(a) for r = 1.0 F. 

We trace the integral (2.3) back to the K matrices 
tabulated in BGW or to an appropriate Born approxi­
mation as follows: 

(2.2) 

2-/,, 

4 K. A. Brueckner and 1). T. Goldman, Phvs. Rev 116 424 
(1959); 117, 207 (1960). 
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(1) (ri| V\ti) is expanded in Legendre polynomials, 
and the first two terms are retained [Eq. (4.9) of BLR]: 

( r 1 |F | r 1
, )=(r 1 |F | r 1 +x) 

~V0(rhx)+ Vi(rhx) cos(ri,x), (2.4) 

where V0 and Vi are obtained by evaluating (ti\V\ n+x) 
for x parallel and antiparallel to ri: 

Vo(rhx) = J[(ri | V| r H - ^ i ) + (ri| V\ r.-xf^ 

Fi(n^) = IC(r i |F | r 1 +xr 1 ) - ( r 1 |F | r 1 -xr 1 ) ] . 
(2.5) 

(2) In general, (rx| F | r / ) is given by an equation of 
the form 

( r i | F | r / ) = dr2dr2' <P* (r2) (r i2 \ K \ ti2) <p (r2') 

/ r i+r2 r /+ r 2 ' 

x>{- > 
(2.6) 

[Eqs. (77) and (78) of BGW]. The (rl2\K\r12
f) are the 

matrix elements tabulated in BGW. The delta function 
expresses the conservation of center of mass implicit in 
the assumption (discussed in BGW) that the K matrices 
have a negligible dependence on the total momentum. 
It is apparent that rx, r / , r2, and r2' must form a 
parallelogram (Fig. 1). 

(3) After performing the r2 integration, one obtains 
for the terms on the right of Eq. (2.5) 

7,v(c)(ri,ri±a*i) 

= 167T / rn2dri2 / 
JO J |ri2-2z 

**x ru'dru' 
- { i / / . v ( r 2 , r 2 ' ) ± 

|ri2-2x| 2xr\2 

X [(ri2 | K | r i 2
/)S ,e+3 (fi2 | K \ rw)t, o, central] 

+lHP(r2,r2')±Z(rl2\K\rl2
f)s,e 

+ 3 (fi2 1 K \ r12)t, o, central+ (fi2 | K \ r12)s<0 

+ 3 ( f i 2 | ^ I f^ 'Vo. central]}, (2.7) 

and 

K j v < L 5 ) ( r i , r i ± ^ i ) 

r frii+2x rl2
fdr12f r r r 2 \ 

= 16w rl2
2drl2\ f l J 

J0 J \ru-2x\ 2xri2 \ fl2 / 

X{f^(r2,r2
,)±(ri2 |X|fi2

/)e,o,L.S+f^p(r2,r2
/)± 

Xt(rn\K\r12')t,e,LS+(r12\K\r12')t,0,LS']}. (2.8) 
The proton potentials are given by similar equations 
with HN and Hp (the density matrix elements) inter­
changed. These equations are derived in BGW [Eqs. 
(89) and (90)] and in BLR [Eq. (4.15)]. The factor 
167r comes from the <j> integration and the delta function 
in Eq. (2.6). Note that r2 and r2 appearing above are 
determined by ri, r / and the variables of integration, 
including x and the sign with which it appears in the 

TABLE I. Parameters of the Gammel-Thaler potentials. The 
potentials all have the Yukawa form outside of a repulsive core 
of radius 0.4 F. 

State 

Triplet central even 
Tensor even 
Spin-orbit even 
Singlet even 

Triplet central odd 
Tensor odd 
Spin-orbit odd 
Singlet odd 

Strength, V 
(MeV) 

- 877.39 
- 159.40 
-5000 
- 434.0 

- 14.0 
22.0 

-7315 
130.0 

Inverse range, 

2.0908 
1.0494 
3.70 
1.45 

1.00 
0.80 
3.70 
1.00 

terms on the left. We have appended the subscript " ± " 
on HN and Hp to indicate this dependence. The density 
matrix elements are defined by Eqs. (85), (86), and 
(87) of BGW: 

Rnij{r2)Rnij(r2)Nnij 
^v(r2,r20 = L iY(r2,r2'), (2.9) 

ntj 47rr2r2
/ 

with a similar equation for Hp. Nnij is the occupation 
number for the state (2 j+ l for full shells). 

(4) In the computations, the even state Z-matrix 
elements were used for the S and D states in the 
following combination: 

{rn\K\rl2)s,e 

= E (2/+l)(ri2|iiTi|r12
/).lei>i(ri2,r120, (2.10) 

1=0,2 

with a similar equation for (ri*\K\rn)tte- For the D 
states, a local equivalent potential was calculated by 
hand from the BGW iT-matrix elements (see BLR for 
the reason and justification for this). The odd-state 
central and tensor potentials were not included: They 
cancel each other almost completely. As discussed in 
BLR, the even spin-orbit term in Eq. (2.8) was also 
dropped (its experimental justification being question­
able). For the odd-state spin-orbit contribution in Eq. 

FIG. 1. Relationships be­
tween variables in the 
theory of finite nuclei. 
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(2.8), and for the even-state terms outside the nonlocal 
region (e.g., outside the range of the tables in BGW), 
the Born approximation was used. The Born terms 
were calculated from the potentials in Table I, and for 
5 and D states they are 

( f i 2 | ^ k i 2 , ) = F ^ O ^ ' - f ^ T r r ^ i ^ (2.11) 

where, in terms of the parameters of Table I, V(r) is 
of the form 

V(r)=Ve-»r/ixr. (2.12) 

For the spin-orbit term, we obtain (using only the 
P-state contribution): 

K ^ ( L S ) ( r i , r i ± ^ i ) 

= 16TT/ fvHrxA (±g> 
J0 J \ri2~2x\ 

ru'dr 12 

2xfi2 

6(fl2 —rio') e-nttltLS)tri2> 

X— Vt,oiLS) — — . (2.13) 
4TTTI22 Vt, 

(LS)f 

The factor g is an approximation to the (1 — rrr2/Vi2) 
term in Eq. (2.8). The appropriate expression is ob­
tained by expanding #(r2 , r2 ' ) about n and ignoring 
derivatives higher than the first (which is justified by 
the near locality of the spin-orbit K matrix), and then 
by averaging over the angles which occur in the sub­
sequent integrations. This procedure leads to 

g = \(rw'ri) cos(x,r1 2)( l-2r1 2
2A). (2.14) 

This approximation reduces to the Thomas expression 
if V(LS) is independent of /. The corresponding proton 
potential is obtained by interchanging HN and HP in 
Eq. (2.13). 

(5) The core contribution, as computed fromEqs. (54) 
and (56) of BGW, is 

Kri2-re)*(ru'-rc) (1-6/1-07) 
(r . |X|r .W — ^ - 7 7 T ' (2-15) 

4tirrc
2 (1 —6/r 0) 

with A = 215 or 257 MeV-F and 6 = 0.488 or 0.459 F for 
singlet or triplet states, respectively, and 

fo=[3/47rp(r)]^3. (2.16) 

The density, p(r), is the diagonal element of the total 
density matrix, e.g., Z7jv(r,r)+27p(r,r). 

Because of the magnitude of the problem of com­
puting the nonlocal potential for Pb208, some modifica­
tion of the order of integration from that of BLR was 
necessary. For a given value of all the variables of 
integration, the appropriate terms were calculated for 
fi—ri+x and fi—ri—x. Then the r12' and ru integra­
tions were performed, the rX2 integration being inside 
the fyi integration. The x integration was then done 

for all values of r / simultaneously; e.g., for each point 
in the x integral, the terms were computed for every 
value of r\. This sequence was repeated for each of the 
50 ri2 points. The total time for this phase of the com­
putation was 70 min. The meshes were (in fermis): 

T\ 

n' 
X 

ru 

rvl 

50 points 

125 points 

43 points 

13 points 

17 points 

0.2 (0.2) 10.0 

-1.55 (0.025) 1.55 

0.0 (0.05) 2.1 

0.4 (0.1) 1.0 (0.3) 1.6 (0.5) 3.6 

(r12-0.60) (0.05) (r 12+0.20). 

An intermediate step between HI and H I I was 
required for the lead calculation. The nonlocal poten­
tials were generated by HI and stored on magnetic 
tape as four matrices (neutron and protons, j — l±:\) 
of dimension 7X125 (/,/) for each of the 50 values of r 
(here we change notation from rx to r and t\ to rf). The 
intermediate code reordered these records on magnetic 
tape to 22 sets of Vij(r,rf) in the order in which HI I 
treated each state. [Of the 38 states involved in this 
calculation, 16 differ from some other proton or neutron 
state only in the principal quantum number, n, and 
thus have the same Vij(r,r').~] This intermediate opera­
tion took 15 min. 

Two calculations were performed by HII . The first 
calculation was of the potential functions F and G 
[Eqs. (4.24) and (4.25) of B L R ] : 

Fnls(r)~iwr r'dr' 
ViAr/) 

Rnij(r')Rnij(r) 

+a2-

Dnij(r) 

dRnl}(r
f) dRnlj(r)-] 

and 

Gnij{r) — 4ira2r r'drf-

X Rnh<rf} 

drf 

Dnij(r) 

dRnij(r) 

dr 

dr 
+ Vc(r), (2.17) 

-Rmj(r) 
dRnl3{r') 

where 
dr' J 

Dniiir) = iRm^J+a^dRn^/drJ, 

(2.18) 

(2.19) 

and Vc(r) is the coulomb potential. The constant a was 
chosen to be 1 F (the order of the range of the non-
locality of V{r/)), as in BLR. Representative potential 
functions F(r) and G(r) and radial wave functions, 
R(r), are plotted in Fig. 2. 

A simple iterative method for solving the radial eigen­
value equation derived from Eq. (2.1) is described by 
BGW. I t leads to an equation for the ( » + l ) s t iterate 
of the radial wave function Rnij{r) in terms of the »th 
iterate values of the F(r) and G(r) given by Eqs. (2.17) 
and (2.18): 

(Ei-Ho) (Rn+l (r)/r) = [F»(r) + VR {r)jR^ (r)/r ] 

+ LG«(r)/rTdRn+1(r)/drJ (2.20) 
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We have used an improved approximation to the mined the dependence of the rearrangement potential 
rearrangement potential, Vii(r), which is suggested by on the single particle momentum (as a fraction of pi). 
the analysis of Brueckner and Goldman,4 who deter- In BLR, VR(T) was approximated as a constant factor 
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FIG. 2. Representative potential and wave functions for Pb208. (a) Nonlocal potential, 4nrr'V'(r/0 for r = 1.00 F, illustrating variation 
with strength of hard core potential (90 and 100% of normal) and differences between neutron and proton potentials; (b) Potential 
function F(r) for s states, indicating the variation with principal quantum number and differences between neutron and proton func­
tions; (c) Potential function G(r) for s-state neutrons, indicating dependence on principal quantum number; (d) Radial wave functions, 
R(r), for the s-state protons and neutrons; (e) Potential function F(r) for neutrons and protons for two representative states; (f) Radial 
wave functions, R(r), for neutrons and protons for selected states illustrating the variation with orbital quantum number; (g) Potential 
function F(r) for both core strengths for selected states illustrating the spin-orbit splitting; (h) Radial wave functions corresponding to 
the potential functions of 2(g). Unless otherwise indicated, all data are for core strength 90% of normal. 
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TABLE II. Properties of Ca40 calculated with the new rearrange­
ment energy approximation (this paper) compared to the previous 
calculations of BLR and to experiment. Energies are in MeV, 
distances in F. 

where 

Property 

Separation energy 
neutron 
proton 
difference 

Total energy per particle 

Rms radii 
total 
neutron 
proton 

Spin-orbit splitting 
1^1/2-1^3/2 

neutron 
proton 

lfi?3/2-1^5/2 
neutron 
proton 

Calculated value 
Previous 

This paper (BLR) 

-12 .6 
- 5.5 
- 7.1 

- 6.55 

2.99 
2.98 
3.00 

3.6 
3.5 

4.9 
4.8 

-13 .5 
- 4.9 
- 8.6 

- 6.12 

2.88 
2.84 
2.91 

6.1 
5.9 

7.1 
6.7 

Experi­
mental 
value 

-15.63 
- 8.34 
- 7.29 

- 8.55 

3.52±0.07 

times |j>(/)]2- Our new approximation is 

VR(r) 
= ( 2 6 - Ul(Enlj

N or ̂ -£ b o t t o m ) / (E t o p -E b o t t o m ) ]} 
X[p(r)/p(fo=1.07)]2. (2.21) 

p(ro=1.07) = 0.19488 particles/F3. This equation inter­
polates in terms of the energy eigenvalues between the 
rearrangement energy corresponding to the approximate 
mean momentum of the deepest state and the energy 
appropriate to the top state (e.g., between 26 and 12 
MeV, respectively, at normal density). This improved 
treatment of the rearrangement energy is the only 
essential difference between our calculation and that 
of BLR. 

The solution of Eq. (2.20) is discussed in detail in 
BLR. The procedure starts with choosing an appro­
priate trial eigenvalue and doing a Runga-Kutta inte­
gration out from the origin to an intermediate radius, 
Rtest, and in from a very large radius to Rtmt, The 
latter integration starts with the logarithmic derivative 
of Rnij(r) set equal to that of the appropriate asymp­
totic solution of the Schrodinger equation. This inte­
gration is done with successively better estimates of the 
eigenvalues until the logarithmic derivatives of the 
wave functions match at Rtest- The wave functions are 
then normalized to unity. The entire HII calculation 
had to be repeated three or four times per iteration to 
obtain satisfactory convergence. This minor iteration 
procedure took about 25 min, ten of which were re­
quired for calculating the F and G, 

The total energy per particle quoted in the next 
section (and in BLR) is given by 

•Etotai per particle = ^totai/(number of particles), (2.22) 

£totai= E IE^ jdrl^irXiF^ + VRir)) 

dRi{r) 
particles 

+hRi(r)Gi(r)-

a result which is easily derived. 
dr 

S (2.23) 

III. RESULTS 

A. Comparison with Previous Rearrangement 
Energy Approximation 

In order to check our revised code and to ascertain 
the effects of the new treatment of the rearrangement 
energy, we calculated the properties of Ca40 and com­
pared our results with the original code used by BLR 
at Los Alamos, both with and without the new energy 
treatment. The agreement between the BLR code and 
our code was good: —6.78 vs —6.55 MeV mean energy 
per particle, 3.00 vs 2.99 F rms radii, and 0.7 MeV or 
less difference in the eigenvalues. The differences are 
entirely attributable to a few minor coding errors in the 
original program. Table II compares the new results 
with those reported in BLR. The net effect of our im­
proved rearrangement energy approximation is slightly 
better agreement with experiment for almost every 
property tabulated: separation energies, total energy 
per particle, and rms radii. In addition, the spin-orbit 
splittings are more nearly proportional to the (2/+1) 
separations generally expected. However, the magnitude 
of the total energy per particle is still not large enough 
(-6.55 MeV vs the experimental -8.55 MeV),5 the 
proton rms radius is too small (although it is increased 
by 3% to a new value which is 83% of the experimental 
value),6 and there is slightly too much difference 
between the separation energy of the last particle and 
the total energy per particle (1.1 MeV compared to the 
previous 1.2 MeV and the experimental 0.2 MeV). 
Comparative potential energies and eigenvalues are 
given in Table III for every state of Ca40 with the old 
and new approximations. The range of eigenvalues has 
been reduced from —70.1 through —4.9 MeV to —48.7 
through —5.5 MeV. This reduction in spread of energies 
indicates that the previous approximation reproduced 
the absolute magnitudes of the energy spectrum quite 
poorly except near the top levels; the otherwise close 
agreement between the two calculations indicates that 
the approximation employed in BLR was adequate 
for the computation of the average properties of the 
nuclei (such as mean energies, rms radii, etc), and that 

6 The experimental energies quoted in this paper are calculated 
from experimental masses tabulated by L. A. K6nig, J. H E 
Mattauch, and A. H. Wapstra, Nucl. Phys. 31, 18 (1962). 

6 The proton radii and surface depths quoted in this paper are 
the electron scattering values summarized by R. Hofstadter 
S ^ - J ^ x E ^ 2 8 ' 2U (1 9 5 6>> a n d b y D - G- Ravenhali; ibid. 30, 430 (1958). 
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TABLE III . Calculated potential energies and eigenvalues for Ca40 with the new approximation to the rearrangement energy (this 
paper) and with the previous approximation (BLR). The core strength was 90% of the normal value. All energies are in MeV. 

State 

lSl/2 
lPs/2 
Ipllt 
lds/2 
2Si/2 
ldz/2 

Potential 
Neutron 

-58 .4 
-51 .4 
-48 .5 
-43 .0 
-38 .1 
-37 .9 

This 
energy-
Proton 

-51 .1 
-44 .1 
-41 .1 
-35 .5 
-30.2 
-30 .3 

paper 
Eigenvalue 

Neutron 

-48 .7 
-34 .0 
-30 .4 
-17 .5 
-14 .8 
-12 .6 

Proton 

-41.4 
-26.7 
-23.2 
-10 .3 
- 7.6 
- 5.5 

Potential 
Neutron 

-82.4 
-65.2 
-59.3 
-48 .3 
-40 .5 
-39 .6 

Previous calculation (BLR) 
I energy 

Proton 

-72 .1 
-55 .1 
-49 .3 
-38.2 
-30 .0 
-29 .6 

Eigenvalue 
Neutron 

-70 .1 
-44.7 
-38 .6 
-20.6 
-16 .0 
-13 .5 

Proton 

-60.0 
-35 .1 
-29.2 
-11 .6 
- 7.3 
- 4.9 

further improvement in this direction would not be 
likely to change such properties appreciably. 

B. General Properties of Pb208 

In Table IV we tabulate the principal properties of 
Pb208 as calculated by the theory for hard-core strengths 
equal to 90% and 100% of the normal strength. The 
100% core data is the result of a single full iteration 
from the 90% data. Experience with the rapid con­
vergence of these computations indicates that the 
properties tabulated are very near the values we would 
obtain with further iteration (e.g., probably within 0.1 
MeV for the mean energy and 0.01 F for the rms radii). 
Since the individual energy-level predictions (next 
section) are subject to slight fluctuations on the first 
iterations, they are not quoted for the full core. The 
90% core was chosen to permit comparison with the 
calculations in BLR. In those calculations, the reduced 
core contributions were arbitrarily employed as a means 
of improving the binding energies. As we see in Table V, 
too little binding was obtained for the smaller nuclei 
even with the reduced core strength. However, for lead 
with the 90% core the binding energies of the last 
particles are a fraction of an MeV too great (—8.8 vs 
-8 .4 MeV for the top neutron and -8 .9 vs -8 .0 MeV 
for the proton), and the magnitude of the total energy 
per particle (10.0 MeV) is 2.1 MeV greater than that 
calculated from the masses. The energy of the top 
nucleon differs by 1.2 MeV from the total energy per 
particle, compared with the experimental value of 0.5 
MeV. For the 100% core, the magnitude of the total 
energy per particle is several MeV less than the energy 
with the 90% core, and is 1 MeV less than the experi­
mental value. 

The rms proton radii are 16 and 15% too small (for 
the 90 and 100% cores, respectively). Similar errors 
were reported for Ca40 and Zr90. The surface depths are 
1.8 and 1.9 F for the proton distributions and 1.9 and 
2.1 F for the total distributions. (We have taken the 
surface depth to be the distance over which the density 
falls from 90 to 10% of its maximum value in the 
vicinity of the center of the nucleus.) The computed 
depths are slightly smaller than the experimentally 
deduced (2.2±0.3) F for the charge distribution6 and 

(2.45_o.i5+0-45) F for the nuclear distribution.7 The small 
discrepancies might vanish with the correction of the 
error in the rms radii. 

C. Energy Spectrum 

Table VI gives the energy spectrum for the reduced 
(90%) hard core strength. The ordering of states is 
generally in accord with that deduced from experiment 
for the shell model.8 Up through the lg9/2 state, the Pb208 

level assignment is the same as that calculated for Zr90 

(and differs from the Ca40 order in the ldz/2 and 2si/2 

states). With the new rearrangement energy treatment, 
the spread in energy levels and the coarse level spacing 
are probably the most accurate calculated to date. 
Thus, we compare our spread in eigenvalues of about 
70 MeV with those determined in the shell-model calcu­
lations with central potentials and spin-orbit coupling 
of (for example) Malenka9 (about 30 MeV) and of 
Ross, Mark, and Lawson10 (less than 40 MeV). In 

TABLE IV. Properties of Pb208 calculated for core repulsion 
strengths 90% and 100% of normal values. Energies are in MeV 
and distances in F. 

Separation energy or 
top eigenvalue 

neutron 
proton 
difference 

Total energy 
per particle 

Total rms radius 
neutron radius 
proton radius 

Surface depth 

total 

neutron 
proton 

Calculated 
90% core 

- 8 . 8 
- 8 . 9 
+0.1 

-10.00 
4.67 
4.74 
4.56 

1.9 

1.9 
1.8 

100% core 

-6 .86 
4.75 
4.84 
4.62 

2.1 

2.3 
1.9 

Experi­
mental 

-7 .38 
-8 .04 
+0.66 

-7 .87 

5.42±0.11 

2 45+0.45 

2.2 ±0.3 

7 L. R. B. Elton, Rev. Mod. Phys. 30, 557 (1958). 
8 M . G. Mayer and J. H. D. Jensen, Elementary Theory of 

Nuclear Shell Structure (John Wiley & Sons, Inc., New York, 
1956). 

8 B. J. Malenka, Phys. Rev. 86, 68 (1952). 
10 A. A, Ross, Hans Mark, and R. D. Lawson, Phys. Rev. 102, 

1613 (1956). 
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FIG. 3. Proton, neutron, and total densities for repulsive core 
strengths equal to 90 and 100% of normal values. 

general, their relative spacing of low-lying levels is in 
good agreement with ours. However, both authors 
obtain a level sequence at the surface which differs 
from ours: For instance, for neutrons, Ross et al. have 
3£i/2, 3^3/2, 2/5/2, liis/2, • •' compared to our 3ph2j 

ltw/2, 2/5,2, 3^3/2, • • •; and, for protons, they have 3*i/2, 
2^3/2, l/zn/2, • • • compared to our l/zn/2, 3*1/2, 2d3/2, 
In both cases, the spread of energies is less than 2 MeV. 
The above differences can be traced to the spin-orbit 
potential, which is imperfectly known and which is 
treated as a parameter in the shell-model calculations 
to improve agreement with experiment. 

The spin-orbit splittings for the various states are 
tabulated in Table VII. They are of the right order of 
magnitude and follow in a reasonable manner the 
expected (2/+1) graduation in magnitude. In Figs. 2(g) 
and 2 (h) we have indicated the dependence of the local 
equivalent potential, F(r), and of the wave functions 
on this splitting. In particular, we note an appreciable 
spatial splitting of levels with the same orbital angular 
momentum but with opposite spin. 

D. Neutron-Proton Density Relations 

The neutron, proton, and total density distributions 
are indicated in Fig. 3 for the two core strengths. We 

TABLE V. Recapitulation of results for O16, Ca40, and Zr90 with 
the old arrangement energy (VR) approximation and results of 
this paper for Ca40 and Pb208 with the new rearrangement energy 
approximation, Eq. (2.21). 

Element 

on 

Ca<° 

Zr»» 

P b 2 M 

Core 
s t rength 

1.00 
0.825 
1.00 
0.90 
0.90 
1.00 
0.90 
1.00 
0.90 

VR 

old 
old 
old 
old 
new 
old 
old 
new 
new 

-Ea, 
Calc. 

- 2 . 0 2 
- 4 . 4 1 
- 3 . 8 9 
- 6 . 1 2 
- 6 . 5 5 

unbound 
- 5 . 8 0 
- 6 . 8 6 

- 1 0 . 0 0 

Exp . 

- 7 . 9 8 

- 8 . 5 5 

- 8 . 7 1 

- 7 . 8 7 

Calc. 

2.58 
2.41 
3.07 
2.91 
3.00 

3.56 
4.62 
4.56 

TABLE VI. Calculated potential energies and eigenvalues for 
Pb208 for core strength 90% of the normal value. All energies are 
in MeV. 

State 

Ui/t 
l/>3/2 
l/>l/« 
1^5/2 
1^3/2 
2si/2 
1/7/2 
1/5/2 
2pz/2 
2pm 
lg9/2 
±#7/2 
2^6/2 
2<23/2 
3 ^ / 2 
U l l / 2 
l/f9/2 
2/7/2 
3/>3/2 
2/5/2 
1*13/2 
3^>l/2 

Potential 
Neutron 

-70 .3 
-68.6 
-67 .9 
-65.9 
-65.2 
-64.1 
-62.6 
-62.0 
-59.4 
-59.7 
-59.0 
-58.3 
-53.3 
-55.5 
-52.4 
-54 .8 
-54 .0 
-45 .5 
-41.9 
-49.9 
-50.2 
-45.0 

energy 
Proton 

-58.4 
-56.7 
-56 .1 
-54 .1 
-53.3 
-51 .5 
-50 .8 
-49 .9 
-47.0 
-47 .1 
-47.0 
-46 .0 
-41.2 
-42.6 
-39 .8 
-42.9 

Eigenvalue 
Neutron 

-65 .9 
-59 .7 
-58 .4 
-51.7 
-49.7 
-47.5 
-42 .5 
-39 .5 
-36 .8 
-34.7 
-32.2 
-28.0 
-25.2 
-22.6 
-22.5 
-21 .1 
-15.6 
-13 .5 
-10.9 
-10 .3 
- 9.2 
- 8.8 

Proton 

-54.1 
-48.0 
-47.0 
-40 .1 
-38.3 
-35.2 
-30 .8 
-28.1 
-24.4 
-22.7 
-20.3 
-16.5 
-12.7 
-10 .4 
- 9.7 
- 8.9 

note the remarkably uniform total density, and the 
moderate nonuniformity of the neutron and proton 
contributions. We also see that the neutron and proton 
wave functions [Figs. 2(d) and 2(f)] are almost identical 
for corresponding states, with the exception of a very 
slight shift towards the center of the nucleus in the low 
angular momentum states. Thus, much of the difference 
in the density distributions is due to the "extra" neu­
trons in the outer energy shell (which are distributed 
throughout the nucleus as well as at the surface). We 
find that the neutron-proton radii differ by about 0.2 F, 
extending to the larger nuclei the tendency noted in 
BLR for the proton and neutron distributions to have 
nearly equal radii. The origin of this effect lies in the 
symmetry energy and in the insensitivity of the wave 
functions to differences in potential. The absence of an 

FERMIS 

FIG. 4. F(r) for the highest two neutron states of Pb208 and the 
total density as a function of radius. The core strength was 90% 
of normal. 
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appreciable neutron-proton difference for the light 
nuclei (BLR) and the slight difference noted for lead 
are compatible with experimental results.11 Quantita­
tively, for lead we conclude from pion and nucleon 
scattering calculations7 that RN—RP= (0.2=fc0.2) F, 
where R is the half-density radius, in agreement with 
our calculation. This figure does not include that part 
of the difference which results from the finite extension 
of the nuclear potential beyond the matter distribution 
when the radii are determined from separate nuclear 
and charge-dependent interactions. We discuss this 
difference next. 

E. Density-Potential Relations 

In Fig. 4 we have plotted the potential function Fir) 
for the two top neutron states against the density 
distribution. The top proton potential is not shown 
because it lies inside the neutron potentials, a conse­
quence of the smaller proton distribution. The separa­
tion between total density and potential (0.5 F) is 
slightly less than that of Ca40 and Zr90 (0.75 F); the dif­
ference between the proton half-density point and the 
nuclear potential half-maximum is 0.7 F. These results 
agree within the limits of experimental error with the dif­
ferences betweenRP= (1.18±0.02) ,l1/3= (7.00±0.14) F 
from electron scattering6'12 and from M mesonic atoms,13 

and # F = (1.25=1=0.05) A*/* = (7.41 ±0.30) F from low 
and high energy neutron scattering.14 Wilets15 has con­
cluded from neutron and proton scattering that the 
difference between the nuclear potential radius and the 
matter radius is independent of A and is (1.0±0.3) F. 
This difference in radii is largely due to three effects 
previously discussed,16 namely, (a) finite range of inter­
action; (b) nonlinear variation of potential energy with 
density (Wilets effect)17; and (c) nonlocality of the 
effective interaction. 

F. Comparison with Surface Predictions of 
Other Theories 

It is interesting to compare the character of the 
nuclear surface as predicted by previous semiempirical 
theories with our results (which are essentially from 
"first principles" if the concept of a two-body nuclear 
potential is valid). We will mention only two previous 
calculations to indicate the degree of precision obtain­
able. One is the pure Hartree-Fock calculation by 

11 W. N. Hess and B. J. Mover, Phys. Rev. 101, 337 (1955); 
R. W. Williams, ibid. 98, 1387 (1955). 

12 K. W. Ford and D. L. Hill, Ann. Rev. Nucl. Sci. 5, 25 
(1955). 

13 E. M. Henley, Rev. Mod. Phys. 30, 438 (1958). 
14 S. Fernbach, Rev. Mod. Phys. 30, 414 (1958); J. H. 

Atkinson, W. N. Hess, V. Perez-Mendez, and R. Wallace, Phys. 
Rev. 123, 1850 (1961). 

15 L. Wilets, Rev. Mod. Phys. 30, 542 (1958). 
16 K. A. Brueckner, Phys. Rev. 103, 1121 (1956); Rev. Mod. 

Phys. 30, 561 (1958). 
17 R. A. Berg and L. Wilets, Phys. Rev. 101, 201 (1956); L. 

Wilets, ibid. 101, 1805 (1956). 

TABLE VII. Spin-orbit splitting for Pb208 in MeV. The core 
strength was 90% of its normal value. 

1^1/2—l/>3/2 
2^1/2 — 2^3/2 
3^1/2 — 3/>3/2 
1^3/2—1^5/2 
2^3/2 — 26?5/2 
1/5/2—1/7/2 
2 /5 /2—2/7 /2 
lg7/2— lg9/2 
1^9/2—1^11/2 

Neutron 

1.3 
2.1 
2.1 
2.0 
2.6 
3.0 
3.2 
4.2 
5.5 

Proton 

1.0 
1.7 

1.8 
2.3 
2.7 

3.8 

Rotenberg18 with .Y = Z=92. It yielded surface thick­
nesses of 2.7 and 3.1 F for Gaussian and Yukawa wells, 
respectively, and predicted a marked dip in the proton 
distribution near the origin (which is absent in our more 
exact calculation). The calculated separation between 
the rms radii of the particle density and of the self-
consistent collective potential in this model was less 
than 0.2 F. An intermediate step between the pure 
Hartree-Fock calculation and the BGW theory is the 
semiempirical model of Berg and Wilets.15,17 This model 
yields JR#— Rp=0.2 F (in agreement with our result) 
and i^(potential)—i? (nucleon) = 0.7 F (compared to 
our 0.5 F). 

G. Summary of Results for the Four Nuclei 
Studied to Date 

The following is a summary of the general features of 
the results for full-shell nuclei (O16, Ca40, Zr90 and Pb208) 
studied in this paper and in BLR. 

(1) The magnitudes of the total energy per particle 
and of the separation energies are smaller than their 
experimental counterparts. 

(2) The difference between observed and calculated 
energies decreases with increasing nuclear size. 

(3) The energy spectrum is in general agreement with 
experiment, and the computation of the coarse spacing, 
with the new rearrangement energy approximation, is 
probably the most accurate to date. However, the 
detailed spacing between close levels, particularly when 
widely different angular momenta are involved, may 
not be correct in every instance. 

(4) The energy spectrum is quite sensitive to any 
changes in the calculation (as, for example, the changes 
in the treatment of the rearrangement energy and in 
the core strength). This is to be expected, because the 
single-particle energies are to be compared with po­
tential wells of the order of 70 MeV. Thus, a MeV 
change in particle energy is less than a 2% change in 
potential energy. 

(5) The radii of the nucleon distributions are in 
good agreement with experiment for O16, with full core, 
but are about 15% too small for the other nuclei studied. 

(6) These radii are relatively insensitive to changes 
18 M, Rotenberg, Phys. Rev. 100, 439 (1955). 
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in the calculation, a "stiffness" which has been observed 
in the calculations of BLR and of this paper. 

(7) The theory predicts the details of the internal 
density distribution, and the calculations have brought 
out a remarkably uniform ratio of neutron and proton 
densities in the lighter nuclei, with only minor variance 
in Pb208. To date it has not been possible to verify the 
detailed internal distributions of these nuclei experi­
mentally, although the analysis of Ford and Hill12 

indicates that the charge distribution for lead is prob­
ably reasonably uniform (and especially that there is 
no dip in the center as deduced for gold),6 in agreement 
with our results. 

(8) The calculated surface properties are compatible 
with present experimental evidence. In particular, the 
surface depth, neutron-proton radius differences, and 
the matter-potential relations at the surface are quanti­
tatively predicted. 

IV. CONCLUSIONS 

The surface depth of the nucleus is now known ex­
perimentally to within about 10%.6 Our results are 
compatible with experiment and form a theoretical 
explanation of its shape from first principles. Indeed, 
there is a need for further refinement of the experiment 
to verify the internal structure of each nucleus and to 
ascertain the surface shape consistent with it. There 
is also a need for further refinement of the BGW theory 
to obtain better rms radii, with the result that the 
surface depths predicted might be more accurate. In 
addition, our theoretical knowledge of the neutron and 
proton density ratios and of the potential-density rela­
tion at the surface is compatible with, and at present 
more definitive than, experiment. A feature of the 
surface which this theory does not describe is possible 
existence (discussed by Wilkinson)19 of nucleon clusters, 
possibly "alpha" particles, in the nuclear surface. Super­
fluidity in the low-density region, if present, is also not 
treated, but it is believed to have negligible effect on a 
gross property such as surface depth. 

For the remaining properties (binding energy, mean 
proton and neutron radii, separation energies, and spin-
orbit splittings), the theory is in semiquantitative agree­
ment with experiment, the maximum errors being of the 
order of 15%. The sources of these errors can be grouped 
into three categories: (1) the numerical procedures, (2) 
the input (i.e., the phenomenological potentials), and 
(3) the theory itself (both the Brueckner theory of 
infinite nuclear matter and the BGW theory of finite 
nuclei). The first of these (the numerical procedures) is 
rejected as a source of major error on the basis of the 
thorough tests by BLR of the meshes employed and the 
improvement of the results with nuclear size in spite 
of the fact that any errors from the numerical pro­
cedures probably increased also. 

19 D. H. Wilkinson, Proceedings of the International Conference 
on Nuclear Structure, Kingston, Canada (University of Toronto 
Press, Toronto, 1960), p. 20. 

However, some of the error may arise in the choice of 
the phenomenological two-body nuclear potential. Re­
cent calculations20 of the properties of nuclear matter 
show that different phenomenological potentials which 
apparently give "equally good" fit to scattering data 
do not necessarily lead to identical nuclear properties 
for the many-body system. It is possible that a better 
potential would resolve some of the discrepancies be­
tween our calculations and experiment. It should be 
noted that of the seven potentials employed in the 
calculations of reference,20 the potential of Table I 
gives the best agreement between the calculated and 
semiempirical properties of infinite nuclear matter. This, 
however, does not mean that this potential is the 
"correct" one, and more work in phenomenological 
potentials is indicated. Further, in the more accurate 
calculations of Brueckner and Gammel1 this potential 
yielded for nuclear matter a slightly smaller binding 
energy (—15.2 MeV) than the semiempirical value 
(best value —15.8 MeV, but values from —15.5 to 
— 17.0 are also quoted)21 and an equilibrium spacing 
that was 5% too small (1.02 vs 1.07 F). These effects 
undoubtedly influence the computations of BLR and 
of this paper. In addition, there is some question 
whether the hard core should be nearer 0.4 F (as in the 
Gammel-Thaler potential we use) or 0.5 F (as sug­
gested by more recent determinations of phenomeno­
logical potentials).22 A potential with a larger core 
might give lower density saturation and larger nuclear 
radii. 

The improvement with increasing mass number of 
the computed binding energy strongly suggests that 
the principal source of error is in the treatment of the 
"surface" energy, which is considerably too large. It 
should be emphasized that the "surface" energy, in our 
calculations, does not arise solely from the classical 
effect related to the density variation in the surface. 
The rearrangement energy, which is essential in the 
finite system in the determination of the wave function 
and density, and hence indirectly in the determination 
of the total energy, does not appear in the uniform 
system. Thus, its effect in the finite nucleus is, in fact, 
a "surface" effect. The methods of BLR and of this 
paper are at best a treatment of the rearrangement 
problem based on plausibility; they are not rigorously 
proved. Further investigations of this many-body 
problem peculiar to the finite system are clearly 
needed. 

In conclusion, we have ascertained that the BGW 
theory of finite nuclei is in semiquantitative agreement 
with experiment, the agreement improving with nuclear 
size. Further, we have seen that our state-dependent 

20 K. A. Brueckner and K. S. Masterson, Jr., Phys. Rev. 128, 
2267 (1962). 

21 A. E. S. Green, Rev. Mod. Phys. 30, 569 (1958); A. G. W. 
Cameron, Can. J. Phys. 35, 1021 (1957). 

22 K. E. Lassila, M. H. Hull, Jr., H. M. Ruppel, F. A. McDonald, 
and G. Breit, Phys. Rev. 126, 881 (1962). 
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approximation to the rearrangement energy correction 
gives appreciably better results than those obtained 
in the previous calculations. Finally, it appears probable 
that much of the residual error in the results can be 
removed by improvements in the phenomenological 
two-body potential upon which the calculations are 
based, and by improvement of the "surface" energy. 

INTRODUCTION 

RECENTLY, there has been considerable interest 
in the interpretations of reactions of the type 

a+A —>b+c+d. 

Each of the three particles in the final state has a 
spectrum of energies. The shape of the spectrum de­
pends on the nuclear forces acting in the system and 
for this reason has not yet been derived exactly. Never­
theless, such reactions as d-\-p —>p+p-\-n, d+n—> 
p+n+n, t+d—>t+p+n, a+d—>a+p+n, t+t—» 
a+n+n, Be9+i> -> a+a+d, K~+p -> K°+T-+p, and 
2-+d—• (A0 or S0)+w+^1~6,8~11 are often discussed 

* Work performed under the auspices of the U. S. Atomic 
Energy Commission. 

f This work represents part of a thesis prepared in partial 
fulfillment of the requirements for the degree of Master of Science 
at the University of New Mexico. 
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Anderson, C. C. Gardner, J. W. McClure, and M. P. Nakada, 
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in terms of the cluster model which suggests that 
three-body decay can be treated as a time sequence 
of two-body interactions4"7 or in terms of final-state 
interactions among the reaction products. *~15 

The T{t,a)nyn reaction for triton energies below 2.1 
MeV has been investigated in some detail at this lab­
oratory,6 and the alpha-particle energy spectra were 
fairly well explained by a two-stage process calculation. 
The present experiment is a similar study of the 
He?(t,a)p,n reaction. 

When helium-3 is bombarded with tritium, the follow­
ing reactions are the only ones possible at low bom­
barding energies: 

He3+/ -> He4+d, (Q= 14.320 MeV) (1) 

->Keb+p->a+p+n, (6= 11.14 MeV) (2) 

-> Li5+w -> a+p+ny (Q= 10.13 MeV) (3) 
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The energy distributions of alpha particles and of protons from the He3-H reactions have been measured 
for 1.9-MeV incident tritons at laboratory angles of 30° for alphas, and both 30° and 90° for protons. 
Absolute cross sections are obtained. The spectra are discussed in terms of a model which assumes that 
uncorrected three-body breakup and several two-stage processes all contribute independently to the cross 
section. The calculations based on this model are in excellent agreement with the observed spectral shapes. 
The neutron-proton correlation corresponding to the unbound singlet state of the deuteron is observed. The 
binding energy of He5 (for breakup into a neutron and an alpha particle) was found to be «= — 0.79db0.03 
MeV. 


